Is 316 Stainless Steel Magnetic?

Is 316 Stainless Steel Magnetic

Is 316 stainless steel magnetic ?Due to its austenitic structure, 316 stainless steel is usually non-magnetic in standard annealed form, but will exhibit weak magnetism after processes such as cold working or welding. This makes it suitable for most applications where non-magnetic materials are required, although factors such as fabrication may introduce slight magnetic properties.

  • Typical non-magnetic properties: 316 stainless steel is an austenitic stainless steel with a face-centred cubic (FCC) crystal structure in the annealed or solid solution state, and is essentially non-magnetic.
  • May become slightly magnetic: Cold working or other processes may produce a mild magnetism, but it is usually weak and not comparable to ferritic steels.
 

In its typical (annealed) form, 316 stainless steel is not magnetic. However, we’ll explore why that is so and under what conditions 316 stainless steel can exhibit magnetism in this blog.

316 stainless steel is an austenitic stainless steel known for excellent corrosion resistance, durability and versatility, often referred to as “marine grade” stainless steel, suitable for use in seawater-exposed applications, and is widely used in environments exposed to harsh chemicals or salt water.

It contains about 16–18% chromium, 10–14% nickel, and ~2% molybdenum, which is similar to the common 316L grade. The extra molybdenum helps 316 resist chlorides (e.g. saltwater). Its high nickel content stabilizes the austenite crystal phase. Crucially, austenitic stainless steels (like 304 and 316) have a face-centred cubic structure that is non-magnetic at room temperature.

316 is a modified version of 304 stainless steel, containing molybdenum for enhanced pitting resistance. It is widely used in medical equipment, food processing equipment and construction.

316 Stainless Steel Chemical Composition

Élément%Role
Chrome (Cr)16-18Provides corrosion resistance and helps form a passive oxide layer.
Nickel (Ni)10-14Stabilizes the austenitic structure, contributing to non-magnetic properties.
Molybdenum (Mo)2-3Enhances resistance to chloride-induced corrosion; minimal impact on magnetism.
Fer (Fe)Balance (~65-70%)Base metal; in austenitic form, it’s non-magnetic.
Manganèse (Mn)Up to 2Aids in deoxidation and improves hot working properties.
Silicium (Si)Up to 0.75Improves oxidation resistance.
Carbone (C)Up to 0.08Controls hardness; low levels prevent carbide formation.
Others (P, S, N)Trace amountsMinor elements for specific enhancements.

This composition ensures that 316 stainless steel remains austenitic at room temperature, making it non-magnetic (less attractive to strong magnets) rather than ferromagnetic. Higher nickel and added molybdenum make 316 more stable and less susceptible to magnetic transformation than 304.

316 Stainless Steel Magnetic Properties

Is 316 stainless steel magnetic? The consensus from materials experts is: 316 is not magnetic in its standard (annealed) condition.

The magnetic behavior of 316 stainless steel depends greatly on its microstructure. The 316 austenitic stainless steel has a face-centered cubic (FCC) structure and is inherently non-magnetic. Nickel stabilizes the austenitic phase, preventing the iron from reverting to a body-centered cubic (BCC) or tetragonal structure, which would be magnetic.

That said, there are exceptions.Cold working or welding can generate martensite or ferrite partially, making the material “weakly magnetic”. With appropriate annealing (approx. 1010-1150 °C), the austenitic organization can be restored and the magnetism disappears.

Permeability data for Austenitic Steels:

ConditionPermeability RangeMagnetic Response
Annealed1.003-1.005Negligible non-magnetic
Cold Worked (Moderate)1.01-1.05Weak magnetism
Heavily DeformedUp to 1.1+Mildly noticeable

Although 316 stainless steel has a low base magnetic response, processing such as heavy machining, bending, or welding can cause the austenite to transform to martensite or ferrite in region, resulting in magnetism.

Factors that Make 316 Stainless Steel Magnetic

316 stainless steel is non-magnetic or only weakly magnetic in the normal state, but work hardening or cold work deformation may lead to magnetic enhancement.

Machining/ Heat Treatment StateMagnetic PerformanceComment
Annealing (or solid solution treatment)non-magneticThe austenitic (FCC) structure remains non-magnetic under the stabilizing effect of high nickel (10-14 %) and molybdenum.
Cold WorkingMild MagneticProcesses like rolling, bending, or drawing strain the lattice, forming martensite—a ferromagnetic phase.
Soudage

localized magnetism

(especially in the heat affected zone)

Heat-affected zones can create ferrite or martensite, leading to localized magnetism.
Casting vs. Wroughtslightly magneticCast 316 (CF-8M) often contains 5-15% ferrite for strength, making it slightly magnetic, unlike wrought forms.
Low TemperaturesMay generate magnetismExposure below room temperature can trigger phase changes.

To reverse this, stress relieving at 700-800°C or solution annealing at 1000-1150°C restores non-magnetism without compromising corrosion resistance.

316 vs 304 Stainless Steel: Magnetic

Stainless steels 304 and 316 are two commonly used austenitic stainless steels.Both are typically non-magnetic when annealed, but 304 has a slightly higher magnetic susceptibility; the extra nickel makes 316 steel even less magnetic.

FonctionnalitéAcier inoxydable 316Acier inoxydable 304
Nickel Content10-14%8-10.5%
Molybdenum2-3%None
Magnetic Response (Annealed)NegligibleSlightly higher
After Cold WorkingLess magneticMore prone to magnetism
ApplicationsMarine, chemicalGeneral purpose
Is 316 Stainless Steel Magnetic

Applications

Its non-magnetic nature is a key reason for its use in sensitive applications like MRI machines, naval mine-sweeping, and electronics enclosures.Designers choose 316 stainless steel to avoid interference from magnets or electric fields.

  • Medical Devices: Implants and MRI-compatible tools avoid interference.
  • Marine Environments: Boat fittings and offshore platforms resist corrosion without magnetic issues.
  • Electronics and Instrumentation: Housings for sensors where magnetism could distort readings.
  • Chemical Processing: Tanks and pipes handling corrosives.
  • Aerospace: Components requiring low weight and non-magnetism.

Common Misconceptions about 316 Stainless Steel Magnetic Properties

1.All Stainless Steel is Non-Magnetic:

False; ferritic types are magnetic, while austenitic like 316 usually aren’t.

2. Magnetism Indicates Low Quality:

Not true; it’s often a result of processing, not defects.

3. 316 is Always 100% Non-Magnetic:

Cold working processing can introduce weak magnetism.

4. Magnetism Affects Corrosion Resistance:

Unrelated; non-magnetic doesn’t guarantee better corrosion.

Conclusion

In summary, 316 stainless steel magnetic properties are generally non-existent in annealed forms, making it ideal for demanding applications.

Partager :

Plus d'articles

Quel est le meilleur acier inoxydable, 316 ou 304 ?

Quel est le meilleur acier inoxydable, 316 ou 304 ?

Les aciers inoxydables 304 et 316 ont chacun leurs caractéristiques. La qualité 316 offre une résistance supérieure à la corrosion (en particulier aux chlorures) et une plus grande solidité, mais à un prix nettement plus élevé. La nuance 304 est plus économique pour un usage général et reste très résistante à la corrosion dans des environnements non agressifs.

L'acier inoxydable 304 rouille-t-il ?

L'acier inoxydable 304 rouille-t-il ?

L'acier inoxydable 304 est très résistant à la rouille, grâce à sa composition riche en chrome. Toutefois, il peut rouiller dans des conditions extrêmes ou s'il n'est pas correctement entretenu.

Acier inoxydable 304

Qu'est-ce que l'acier inoxydable 304 ?

L'acier inoxydable 304 est un acier inoxydable austénitique standard, appartenant à la famille des aciers inoxydables "18-8", contenant environ 18% de chrome et 8% de nickel. Il s'agit de la qualité d'acier inoxydable la plus utilisée et elle est connue pour sa bonne résistance à la corrosion, sa formabilité et sa soudabilité.

Laisser un message

Nous contacter

Le contrôle total des produits nous permet de garantir à nos clients des prix et un service de la meilleure qualité. Contactez-nous pour un devis gratuit, JBLSTEEL vous fournira la bonne solution pour votre projet.

Prendre contact

Adresse

DEMANDER UN DEVIS GRATUIT
Envoyez-nous un message si vous avez des questions ou si vous souhaitez obtenir un devis. Nous vous répondrons dès que possible dans un délai d'une heure.